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1 Introduction

In more than a decade, since the celebrated work of Randall-Sundrum [1, 2], the warp

compactification, has been considered as a new approach to explain the hierarchy problem

in 4-dimensional space-time as a low energy limit of higher dimensional theories. This

approach brought new phenomenological results with more hopes to find evidences for

higher dimensional theories in a foreseeable future.

Long before the warp compactification idea, the six dimensional gauged supergravity

was studied by Salam-Sezgin in [3–6], as a simple model to obtain the supersymmetric vacua

by compactification to 4 dimensions. It has also interesting applications in cosmological

model building [7–10]. On the other hand, in another development [11], it has been shown

that this model can be derived from the string theory which strengthens its importance as

a descendent of a fundamental theory. In a modern view, the Salam-Sezgin supergravity

is rich enough, while simple, to provide the warp compactification including fluxes [12–18].

In [17], it was found that four dimensional Minkowski space solution is not only possible, but

inevitable if one requires maximal symmetry in four dimensions and compactness of internal

space. Based on these features, it is worth to work out its various warp compactifications.

The bosonic part of the model contains the metric, dilaton, a 2-form F(2) and a 3-form

H(3) as field strengths. In [12–19] a static warped solution has been found for H = 0 and

F 6= 0. A dynamical model was proposed in [20]. For some recent developments see [21–23]

In all of the case, so far H has been set to zero. Beside technical reasons which make

equations hard to solve when H is included, it is obvious that the presence of a 3-form

in a 6-dimensional space can not support a symmetric 4-dimensional compactification.
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Nonetheless, we will see soon that the situation is not a disaster and one may find an

appropriate interpretation.

In this paper, we have considered a 4-dimensional compactification with H field which

is extended along the 2-dimensional internal space and the time direction. This kind of

discrimination between time and other non-compact spatial directions, may suggest its

application to cosmological models, however, here we restrict ourselves to a static model

and postpone the study of dynamical solutions to future. Should we need a warp com-

pactification, H field configuration suggests the warp factors in time and spatial directions

should be different. This is what has been called ‘time warp’ recently in [24]. The ratio of

time and spatial warp factor is the light speed which depends on the internal coordinate

by construction. There is a no-go argument in [24] according to which the internal space

in time warped solutions can not be compact, unless the null energy condition is violated.

Meanwhile the validity of this no-go theorem in d = 6 is under query, and indeed our model

provides a counterexample in which the null energy condition can be satisfied even for the

compact case.

We show that it is needed to solve equations in different patches and join them by Israel

junction conditions [25]. These conditions could be satisfied only when one introduces the

branes at joining positions [26]. In this way we find out branes sitting at the middle and

two ends of the compact space. More explicitly, we consider a compact internal space

with axial symmetry which satisfies equations of motion in the interval [0, L] for the radial

coordinate, z, and then extended to [−L, 0] interval with L and −L identified. Thus we

have a torus topology, with two cusps at 0 and L which are the positions of branes. We

consider minimal number of branes and show that it is possible to introduce 3- and 4-branes

filling our 4-dimensional space where the 4-brane wrapped and 3-branes are smeared over

the internal circle [27]. On the other side at z = L, in addition to 3- and 4-branes, we need

0-branes to satisfy the junction conditions with time-space asymmetry. These 0-branes

smeared over the world volume of the 4-brane. This configuration makes it possible to

have a 4-dimensional symmetric space at z = 0. To ensure about this symmetry we need

to consider the behavior of H field at z = 0. Indeed H is discontinuous at this position,

since branes act as a surface of polarized charges for the electrical H field, so the H field

changes the sign while crossing the brane. The mean value of H would be zero at z = 0

which together with the branes configuration restore the 4-dimensional lorentz symmetry

at z = 0.

At the first look, it may seem impossible to introduce an effective covariant 4-

dimensional gravity, however, a fine tuning of the parameters make it possible to obtain

the effective Planck mass and 4-dimensional symmetry in the linear approximation.

We organize the paper as follows. In the next section, equations of motion including the

metric, dilaton and H field are solved. In section 3, we introduce the junction conditions

and branes. These conditions also fix some of the integration constants and we discuss the

domain of independent parameters. The section 4 is devoted to discuss the large L limit

where depending on the parameters, the internal azimuthal radius may diverge or shrink

at large L to give new topologies. In section 5, we show the validity of the null energy

condition. In section 6, the effective four dimensional gravity is considered and the effective

Planck mass is derived. We conclude in section 7.
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2 Equations of motion and H-flux solution

Let us start with the bosonic part of generalized Salam-Sezgin model with the following

Lagrangian [3–6]:

L√−g
=

1

2κ2

(
−R− ∂Mφ∂Mφ

)
− 1

4
e−φFMNFMN − 1

6
e−2φHMNP HMNP − 2g2

κ4
eφ (2.1)

where capital latin indices are six dimensional indices, φ is the dilaton, F and H are 2 and

3-form fields. Equations of motion follows as,

−RMN = ∂Mφ∂Nφ + κ2e−φ

(
F 2

MN − 1

8
F 2GMN

)

+
1

2
κ2e−2φ

(
H2

MN − 1

6
H2GMN

)
+

g2

κ2
eφGMN

�φ +
κ2

6
e−2φHMNP HMNP +

κ2

4
e−φFMNFMN − 2g2

κ2
eφ = 0

DM

(
e−2φHMNP

)
= 0

DM

(
e−φFMN

)
+ e−2φHMNP FMP = 0 (2.2)

To solve the above equations, we consider compactification to 4-dimension with axial sym-

metry in the internal space. Since we are looking for static solutions, we take all fields to

be dependent on the internal radial coordinate η as in the following ansatze,

ds2 = −e2w(η)dt2 + e2a(η)δijdxidxj + e2v(η)dη2 + e2b(η)dθ2

F = 0 , eφ = eφ(η), H = h′(η)dt ∧ dθ ∧ dη . (2.3)

For dimensional convenience we assume θ has length of dimension with 0 ≤ θ ≤ Lθ. since

H extensions distinguish the time from other spatial noncompact coordinates, we have

included two different warp factors e2w and e2a in the metric. Now the equations read as,

(Maxwell) h′′ + (3a′ − w′ − v′ − b′ − 2φ′)h′ = 0 (2.4)

(Dilaton) φ′′ + (3a′ + w′ − v′ + b′)φ′ − κ2h′2e−2(w+b+φ) − 2g2

κ2
e2v+φ = 0 (2.5)

(tt Einstein) w′′ + (w′ + 3a′ − v′ + b′)w′ − κ2h′2

2
e−2(w+b+φ) +

g2

κ2
e2v+φ = 0

(ii Einstein) a′′ + (w′ + 3a′ − v′ + b′)a′ +
κ2h′2

2
e−2(w+b+φ) +

g2

κ2
e2v+φ = 0

(θθ Einstein) b′′ + (w′ + 3a′ − v′ + b′)b′ − κ2h′2

2
e−2(w+b+φ) +

g2

κ2
e2v+φ = 0

(ηη Einstein) w′′ + 3a′′ + b′′ + w′2 + 3a′2 + b′2 + φ′2 − (w′ + 3a′ + b′)v′

−κ2h′2

2
e−2(w+b+φ) +

g2

κ2
e2v+φ = 0 (2.6)

To solve these equations we can use the gauge freedom in choosing coordinate η such that,

(w′ + 3a′ − v′ + b′) = 0 (2.7)

– 3 –
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Then suitable combinations of (2.4)–(2.6) give,

h′(η) = ±qe2x

w(η) =
y + x

4
+ (2λ3 + λ4)η

a(η) =
y − x

4
+

(−λ3

3

)
η

v(η) =
5y − x

4
+ λ3η

b(η) =
y + x

4
− λ4η

φ(η) =
x − y

2
− 2λ3η (2.8)

with q a real positive number and x(η) and y(η) can be found from,

x′2 − 2κ2q2e2x = λ2
1

y′2 +
4g2

κ2
e2y = λ2

2 (2.9)

and λi’s are integration constants which are not independent and satisfy,

λ2
2 = λ2

1 + 2 (λ3 + λ4)
2 +

16

3
λ2

3 (2.10)

The general solutions of these equations are:

e−x =

√
2κq

λ1
f(λ1(η − η1))

e−y =
2g

κλ2
cosh(λ2(η − η2))

f(η) =





± sinh(η) λ2
1 > 0

±η λ2
1 = 0

± sin(η) λ2
1 < 0

(2.11)

λ2 is positive, since g, κ, e−y are non-negative values. To ensure that e−x for all η is a

non-zero positive real number we can construct its solution as:

e−x =

{ √
2κq
λ1

f(λ1(η − (η1 − ε)) η > η1

−
√

2κq
λ1

f(λ1(η − (η1 + ε)) η < η1

where ε > 0. If we change the coordinate as follows,

z = λ2(η − η1)

z1 = λ2ε

z2 = λ2(η2 − η1)

λ =
λ1

λ2

– 4 –
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and use the absolute value, we can construct an even solution with respect to z = 0. So

we find

e−x =
κq̃

λ
f(λ(|z| + z1))

e−y =
g̃

κ
cosh(|z| − z2) (2.12)

where

q̃ =

√
2q

λ2
, g̃ =

2g

λ2
. (2.13)

The constraint (2.10) can be written as:

1 = λ2 + 2(λ̃3 + λ̃4)
2 +

16

3
λ̃2

3 (2.14)

where

λ̃3 =
λ3

λ2
, λ̃4 =

λ4

λ2
, λ =

λ1

λ2
.

So far we have derived general solutions to the equations of motion including integration

constants. To fix these constants, we need appropriate boundary conditions or physically

interesting special cases. We deal with these conditions in the following sections.

3 Branes and Israel junction conditions

In this section we study the global aspects of the above solution. Firstly as stated be-

low (2.11), we should keep the exponential functions in the metric to be positive everywhere

and this indicates that the above solutions can not be valid globally, we need to cut and join

them in different patches appropriately. This has already been done at z = 0. Also trying

to find a compact internal space, we take the z direction to be compact in some interval

[−L,L] with periodic boundary conditions.1 We will study the noncompact limit (L → ∞)

later. Indeed the solution set in the previous section is valid for each segment of (−L, 0)

and (0, L). Thus we only need to match different patches by Israel junction conditions. We

know that these conditions ensure the continuity of the solutions and relate the derivative

discontinuities to possible brane tensions. So we expect there might be some branes sitting

at z = 0 and/or z = L.

1The Euler character can be calculated,

χ =
1

4π

Z

Y

√
gR

(2)
d
2
y +

1

2π

Z

∂Y

Kds

where K = gθθKθθ is the geodesic curvature on the boundaries. Then,

χ = 2
Lθ

2π

»Z L

0

e
b−v

`

b
′′

+ b
′2 − b

′

v
′
´

dz − b
′

e
b−v|0 + b

′

e
b−v |L

–

= 0

This shows that the internal space is generically a torus. The Large L limit may cause a cycle shrinks as

can be seen in cases d, f and h of figure 3 .

– 5 –
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The Israel junction conditions relate the jump in the derivatives of the metric to the

branes tension sitting at z = z0 as follows,

[Kmn − Kĝmn]z0 + κ2tmn = 0 (3.1)

where [f(z)]z0 means

[f(z)]z0 := lim
ǫ→0+

(f(z0 + ǫ) − f(z0 − ǫ))

and Kmn is the extrinsic curvature of constant proper radius ρ which is introduced in the

following form of the metric:

ds2 = dρ2 + ĝmndxmdxn . (3.2)

Then the extrinsic curvature is Kmn = 1
2∂ρĝmn. The brane stress energy tmn is given by

tmn ≡ 2√
−ĝ

δSbrane

δĝmn
(3.3)

In our case because the 4D maximal symmetry has been broken out, it is impossible to

interpret the 4-brane stress tensor as being due to a pure tension. But we can be hopeful

to find it at least along one of the branes at e.g. z = 0:

tµν = λ2T ĝµν

tθθ = λ2T4 ĝθθ (3.4)

where T = T4 + T̃3 with T̃3 = T3
Lθ

. λ2 is inserted for later convenience. These are the

configuration of the stress energy tensors of a four-brane wrapping the internal circle and

a three-brane which is smeared over the internal circle. This situation can’t be satisfied

for the other side at z = L simultaneously, so in the most general form, the stress energy

tensors at z = L is taken to be:

t00 = λ2(T̃L0 + TL4 + T̃L3)ĝ00

tij = λ2(TL4 + T̃L3)ĝij

tθθ = λ2TL4ĝθθ (3.5)

where in addition to 3 and 4-branes, we have considered 0-branes at L smeared over all

spatial direction except for z direction. The tilde over the tensions shows they are the

density of smeared tensions, i.e., T̃L0 = TL0/V ol4 and T̃L3 = TL3/Lθ.

Plugging our solution to the junction conditions (3.1), and after appropriate combina-

tions, we obtain the following conditions at z = 0, L:

[a′(z) − w′(z)]z=0 = 0

[b′(z) − a′(z)]z=0 = κ2ev(0)T̃3

[3a′(z) + w′(z)]z=0 = κ2ev(0)T4

[a′(z) − w′(z)]z=L = κ2ev(L)T̃L0

[b′(z) − a′(z)]z=L = κ2ev(L)T̃L3

[3a′(z) + w′(z)]z=L = κ2ev(L)TL4 .

(3.6)

– 6 –
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Let us consider the above conditions on the sinh solution. The sine and linear solutions

can be derived by taking λ → iλ and λ → 0, respectively. Firstly, write the solution as,

e−x(z) =
κq̃

λ
sinh (λ (|z| + z1)) θ (L − |z|)

e−y(z) =
g̃

κ
cosh (|z| − z2) θ (L − |z|)

w(z) =
y + x

4
+ (2λ̃3 + λ̃4)(|z| + z3)θ (L − |z|)

a(z) =
y − x

4
− λ̃3

3
(|z| + z3)θ (L − |z|)

v(z) =
5y − x

4
+ λ̃3(|z| + z3)θ (L − |z|)

b(z) =
y + x

4
− λ̃4(|z| + z3)θ (L − |z|)

φ(z) =
x − y

4
− 2λ̃3(|z| + z3)θ (L − |z|) (3.7)

where θ(z) is the Heaviside step function:

θ(z) =

{
1 z > 0

0 z < 0

The solutions are continuous at z = 0,±L and we demand them to be periodic with respect

to 2L shift.

The first condition of (3.6) gives the following constraint,

3λ coth(λz1) = 14λ̃3 + 6λ̃4 (3.8)

from which together with (2.14) we obtain two constants λ̃3 and λ̃4,

λ̃±
3 =

3

20
cλ ± 3

40

√
−6c2λ2 − 20λ2 + 20 (3.9)

λ̃±
4 =

3

20
cλ ∓ 7

40

√
−6c2λ2 − 20λ2 + 20 (3.10)

where c = coth λz1 and the reality condition for λ̃3 and λ̃4 imposes the following inequality,

z1 ≥ 1

λ
log

√
k +

√
k2 − 1 (3.11)

where k = (10 − 7λ2)/(10 − 13λ2).

Similarly for sine and linear solutions where λ → iλ and λ → 0, respectively, we find

the following regions in λ − z1 plane:

z1 ≥ 1

λ
sin−1

(√
3λ2

13λ2 + 10

)
sine solution

z1 ≥
√

3

10
linear solution

– 7 –



J
H
E
P
1
0
(
2
0
0
9
)
0
8
6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.4

0.8

1.2

1.6

2

λ

z 1

0.5 1 1.5 2 2.5 3 3.5 4
0

0.4

0.8

1.2

1.6

2

λ

z 1

a) sinh solution b) sine solution

Figure 1. The dotted regions are permitted values of λ and z1 for which we have real parameters

λ̃3 and λ̃4. In a the region is asymptote to maximum λ at
√

10/13. In b the upper curve shows an

upper bound as z1 < π/λ. Considering finite L the region z1 < π/λ − L gets smaller.

For the sine case we require that sine to be positive which gives 0 < λ(z + z1) < π, thus

(L + z1) < π/λ. The permitted regions in λ − z1 plane are drown in figure 1.

From the other five junction conditions in (3.6) we derive the brane tensions,

κ2T =

(
8

3
λ̃3 + 2 tanh(z2)

)
e−v(0)

κ2T4 =

(
20

3
λ̃3 + 4λ̃4 + 2 tanh(z2)

)
e−v(0)

κ2TL0 =

(
14

3
λ̃3 + 2λ̃4 − λ coth(λ(L + z1))

)
e−v(L)

κ2TL4 =
(
−2λ̃3 − 2λ̃4 − λ coth(λ(L + z1)) + 2 tanh(L − z2)

)
e−v(L)

κ2T̃L3 =

(
−2

3
λ̃3 + 2λ̃4 + λ coth(λ(L + z1))

)
e−v(L)

(3.12)

where

e−4v(0) =
g̃5λ

κ6q̃

cosh5(z2)

sinh(λz1)
e−4eλ3z3

e−4v(L) =
g̃5λ

κ6q̃

cosh5(L − z2)

sinh(λ(L + z1))
e−4eλ3(L+z3) (3.13)

Notice that the brane tensions could be positive or negative depending on the parame-

ters involved (λ, z1, z2 and L). We may realize that we are living at z = 0 with an isotropic

brane extension along our 4-dimensional space as in (3.4). So the relevant brane tension to

us would be: T where its sign depends on λ, z1 and z2. In figure 2, for one special value of

z2, the positive and negative tension regions are shown for sinh and sine solutions, in λ−z1

plane. The positive and negative regions shrink or expand by changing the value of z2.

Similar joining process should be considered for H field. The Maxwell equation (2.4)

indicates that h′′ is regular everywhere, on the other hand in (2.8), h′ field solution admits

– 8 –
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= −0.6 ,  λ

3
= λ

3
+

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
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0.5 1 1.5 2 2.5 3 3.5 4
0

0.4

0.8
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2

λ

z 1

z
2
= 2 ,  λ

3
= λ

3
+

0.5 1 1.5 2 2.5 3 3.5 4
0

0.4
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1.6

2

z
2
= 2 ,  λ

3
= λ

3
−

λ

z 1

c d

Figure 2. The plus and minus signs correspond to positive and negative tension T regions, respec-

tively. Empty places are non-real tensions (non-real λ3). The plots a, b are for sinh and c, d are

for sine cases respectively.

both plus and minus signs. Thus it should change sign while crossing z = 0 and z = L.

Therefore we take the plus sign for 0 < z < L and minus for −L < z < 0. Precisely

at z = 0 and z = L we take H to be zero. This implies vanishing H at z = 0 where is

interpreted as the position of our 4-dimensional universe.

4 Large L limit

Let us before studying the noncompact limit by sending L to infinity, introduce the proper

radius ρ as

ρ =

∫ ∞

0
ev(z)dz (4.1)

then the internal 2-dimensional metric reads as

ds2
2 = dρ2 + R2(ρ)dθ2 (4.2)

where R(ρ) = eb(z(ρ)). Using numerical integration of (4.1), the shape of internal space is

drawn for various amounts of parameters in figure 3 for the sinh case. Notice that the edges

at z = 0 and z = L are the places of branes. These are almost all possibilities that happen

– 9 –
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in the sinh case, either in the finite L or large L limit. In the rest we just concentrate on

the sinh case. For sine case the upper limit, L + z1 < π/λ, forbids the large L limit.

Beside this numerical integration, it is worth to study the behaviors of tensions and

radius of the internal space for large L limit. Firstly, for brane tensions, the results in the

previous section show that the branes at z = 0 are untouched when L is going to infinity.

Thus we investigate branes sitting at L for very large L.

The brane tensions at large L are

κ2TL0|∞ =

(
14

3
λ̃3 + 2λ̃4 − λ

)
e−v

κ2TL4|∞ =
(
−2λ̃3 − 2λ̃4 − λ + 2

)
e−v

κ2T̃L3|∞ =

(
−2

3
λ̃3 + 2λ̃4 + λ

)
e−v (4.3)

where e−v for large L is

e−v ∼ Ae−αL (4.4)

with α = (λ/4 + λ̃3 − 5/4) and A is an L independent positive constant. From equa-

tions (3.9), we know that α is always negative. Thus all tensions goes to infinity at asymp-

totic distances.

Now look at (4.4), ρ can be found for large z as,

ρ ∼ 1

A

∫ z

0
eαzdz =

1

Aα
(eαz − 1) . (4.5)

Since α is negative, as z goes to infinity ρ approaches to −1/(Aα) and for the radius

we have,

RL ∼ (1 + Aαρ)−
β
α (4.6)

where β = (λ̃4 + λ/4 + 1/4). Thus as z goes to infinity, for negative β, RL diverges and

we have a noncompact space, while for nonnegative β the radius approaches to zero and a

compact space is obtained (see figures 3, 4).

5 Time warp consideration

Let us look at the null energy condition which can be stated as follows [24],

T̃MNξMξN ≥ 0 (5.1)

where T̃MN is constructed from energy-momentum tensor as T̃MN = TMN − 1
d−2gMNTL

L

in a d-dimensional space. Then by the Einstein equation it leads to,

RMNξMξN ≥ 0 (5.2)

for any time-like or null vector ξM .
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Figure 3. The shapes of internal space for various parameters . The axial direction is the ρ-axis.

β < 0 for (a), β = 0 for (b) and β > 0 for others.
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Figure 4. The plus and minus signs correspond to positive and negative β regions in the sinh case,

respectively.

Before checking out this condition in our case, we remind a related no-go theorem

in [24], which states that for a class of solutions named ‘time warp’ the null energy con-

dition can not be satisfied for compact extra dimensions. The time warp solutions are

introduced as,

ds2
d = e2A(y)

[
−h(y)dt2 + d~x2

]
+ e2B(y)ds̃2

d−4 (5.3)

where y denotes the compact coordinates. The above metric covers our solution with A = a

and h = exp(2w − 2a). With this ansatz, the null energy condition gives,

4h2e2B
(
−R0

0 + R1
1

)
= −3g̃mn∂mh∂nh + �̃

(
h2
)

+ hg̃mn∂mh∂n (8A + 2(d − 6)B) ≥ 0

(5.4)

where m and n are extra directions indices. For d 6= 6 one can set B = 4
6−d

A using the

gauge freedom in y coordinate, then,

− 3g̃mn∂mh∂nh + �̃
(
h2
)
≥ 0 (5.5)

Integrating over the compact extra dimensions implies h to be a constant.

Notice that this argument is valid only for d 6= 6. For our metric in (2.3) which is in

d = 6 we find,

e2v
(
−R0

0 + R1
1

)
= w′′ − a′′ + (w′ − a′)2 + (b′ − v′)(w′ − a′) + 4a′(w′ − a′) ≥ 0 (5.6)

which can be converted to the form of (5.4) for d = 6 with h = exp(2w−2a) and b = v. We

have already chosen a gauge freedom in (2.7) by which we can scape the no-go theorem.

Plugging (2.7) in the above inequality one finds the following simple constraint,

w′′ − a′′ ≥ 0 (5.7)

On the other hand,

w′′ − a′′ = x′′

= λ2
(
−1 + coth2(λ(z + z1))

)
≥ 0 (5.8)
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which is always true (for sin and linear case one can send λ to iλ and zero, respectively,

which both satisfy the inequality). This shows that we have constructed a solution which

satisfies the energy constraint and escapes the no-go theorem, even in the compact case.

There is no contradiction here, since the no-go theorem is valid for d 6= 6 and we have a

counterexample for d = 6.

6 Effective 4-dimensional Planck mass

In the usual extra dimensional theories, effective 4D theory is obtained via integrating over

the extra dimensions and interpreting the higher dimensional M-Planck multiplied by the

volume of extra dimension as the effective 4D M-Planck. However, the warp factor of time

is different from the warp factor of space in here, so we should change the usual procedure.

Let us decompose the 6-dimensional Ricci scalar to the 4-dimensional one in the ac-

tion as,

S6 = M4
(6)

∫ √
−G R(6) d6x

= M4
(6)

∫
d4x

√−g

(
− R

(4)
00

∫
dθdη

√
Ge−2w + δijR

(4)
ij

∫
dθdη

√
Ge−2a

)
(6.1)

where R(6) is the 6D Ricci scalar, g is the determinant of the flat metric of 4D theory, G

is the determinant of 6D theory and the 6D Planck-mass is, M4
(6) = 1

2κ2 . We require that:

∫
dθdη

√
Ge−2w =

∫
dθdη

√
Ge−2a =: V (6.2)

where the integration is over the range of η. Now we define the 4D Planck-Mass as:

M2
(4) =

1

κ2
V (6.3)

∫
dθdη

√
Ge−2w =

∫
dθdη e2y−x e−2(λ3+λ4)η

= Lθ
κ3q̃

λ1g̃2

∫ L

−L

dz
sinh(λ(|z| + z1)

cosh2(|z| − z2)
e−2(eλ3+eλ4)|z|

=: Lθ
κ3q̃

λ1g̃2
V1 (6.4)

∫
dθdη

√
Ge−2a =

∫
dθdη e2y e

8
3
λ3η

= Lθ
κ2

λ2g̃2

∫ L

−L

dz
e

8
3

eλ3|z|

cosh2(|z| − z2)

=: Lθ
κ2

λ2g̃2
V2 (6.5)

Equating (6.4) and (6.5) fixes one parameter say κq̃,

κq̃ = λ
V2

V1
(6.6)
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Figure 5. The planck mass MP = Lθ

λ2eg2 V2 and κq̃ as functions of L, for λ = 0.3, z1 = 0.7 and

z2 = 2.

Finally we find the effective 4-dimensional theory as,

S(4) =
1

κ2
V

∫
d4x

√−gR(4) (6.7)

with V given in (6.5).

Notice that our model starts with an asymmetrical spacetime due to the presence of

the 3-form field H, however at the end by a fine tuning of q̃ which is the charge of H, one

can reach to an effective 4-dimensional symmetric gravity.

It is worth to consider the large L limit which correspond to the case that the extra

dimension is not compact and the branes at L are sending to infinity. The integrals in (6.4)

and (6.5) remain finite for L → ∞ which gives us a finite effective 4-dimensional Planck

mass (see figure 5).

7 Conclusion

We have solved the static equations of motion for 6-dimensional Salam-Sezgin model in the

presence of 3-form field H which provides a 4-dimensional compactification. To find out

a global solution over the compact manifold, we consider different patches and join them

with the Israel junction conditions which can be satisfied with inserting some branes at the

junctions. These conditions also fix some integration constants. More explicitly, we have

considered the compact space with angular coordinate θ, and radial coordinate z where

the space is defined to be periodic with fundamental region z ∈ [−L,L] and even under

z → −z. This gives the torus topology. Then to satisfy the Israel conditions, 3 and 4 branes

are inserted at z = 0 such that they are extended along our 4 dimensional space-time and 4

brane wrapped and 3 branes smeared over the θ circle. The situation is the same at z = L

except that we need to add some 0-branes smeared over the 4 dimensional worldvolume of

the 4-brane. We may consider z = 0 where our brane-universe sits.

We have studied the solution behaviors in different regions of independent parameters

and specially for large L limit we found that in some cases the internal radius of θ circle

shrinks and changes the topology from torus to sphere.
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The asymmetry in space and time is due to the presence of the H field. This kind of

warping with different time and space warp factors are recently studied in [24] and called

‘time warp’ compactification. It is known that this compactification violates the null energy

condition in d 6= 6 dimensions [24]. However our compactification which is of course for

d = 6, shows that the null energy condition is satisfied with a time warp compact space.

In section 5, We tried to show why this happens.

Our branes configuration makes it possible to have a 4-dimensional symmetric space

at z = 0. This can be supplemented with the fact that H = 0 at z = 0. Indeed H is

discontinuous at this position, and changes the sign while crossing the brane. The mean

value of H would be zero. There is another view in which the H field exponentially

vanishing at the other end, z = L, for very large L. This enables us to reverse the situation

by putting 0-branes at z = 0 and find a symmetric space-time at z = L for large L where

H vanishes and branes preserve the lorentz symmetry.

Another important issue is introducing an effective 4-dim Planck mass. We have done

it by firstly expanding the 6-dimensional gravity action and then integrate out the extra

dimensions. Since the solution has two different warp factors for time and space, we

encounter with two different integrations. Equating these two integrals we fix the charge

q of the H field and we can factor out integrals over the internal space and find the 4-

dimensional Planck mass.

This model is restricted to a static solution, the next development should be a dynamic

solution in which all fields would be time dependent. This is consistent with the presence

of H and would be important if one is interested in finding cosmological application of this

model. The stability of this model should be checked and may stabilize some parameters

(work in progress).
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